Mortaring for linear elasticity using mixed and stabilized finite elements

نویسندگان

چکیده

The purpose of this work is to study mortar methods for linear elasticity using standard low order finite element spaces. Based on residual stabilization, we introduce a stabilized method and compare it the unstabilized mixed method. For simplicity, both use Lagrange multiplier defined trace mesh inherited from one side interface only. We derive quasi-optimality estimate present stability criteria P1−P1 approximation. Our numerical results demonstrate convergence tie contact problems. Moreover, show that can be successfully extended three dimensional

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed finite elements for elasticity

There have been many efforts, dating back four decades, to develop stablemixed finite elements for the stress-displacement formulation of the plane elasticity system. This requires the development of a compatible pair of finite element spaces, one to discretize the space of symmetric tensors in which the stress field is sought, and one to discretize the space of vector fields in which the displ...

متن کامل

Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity

We present a family of mixed methods for linear elasticity, that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces,...

متن کامل

A Stabilized Mixed Finite Element Method for Finite Elasticity Formulation for Linear Displacement and Pressure Interpolation

A stabilized mixed finite element method for finite elasticity is presented. The method circumvents the fulfillment of the Ladyzenskaya-Babuska-Brezzi condition by adding mesh-dependent terms, which are functions of the residuals of the Euler-Lagrange equations, to the usual Galerkin method. The weak form and the linearized weak form are presented in terms of the reference and current configura...

متن کامل

Rectangular Mixed Finite Elements for Elasticity

We present a family of stable rectangular mixed finite elements for plane elasticity. Each member of the family consists of a space of piecewise polynomials discretizing the space of symmetric tensor fields in which the stress field is sought, and another to discretize the space of vector fields in which the displacement is sought. These may be viewed as analogues in the case of rectangular mes...

متن کامل

Nonconforming Tetrahedral Mixed Finite Elements for Elasticity

This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2023

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2022.115796